Improved Cryptography section and included samples in Java, C, PHP And Python
This commit is contained in:
parent
6c5ae90b1f
commit
144044a551
5 changed files with 407 additions and 22 deletions
68
README.md
68
README.md
|
@ -69,6 +69,7 @@ This project is licensed under GNU Free Documentation License v1.3, see the [LIC
|
|||
* [Signing and Signature Verification](#signing-and-signature-verification)
|
||||
* [Temporary Signature & Verification](#temporary-signature--verification)
|
||||
* [Encryption and Decryption](#encryption-and-decryption)
|
||||
* [Error Handling](#error-handling)
|
||||
* [Methods](#methods)
|
||||
* [generateKeyPair()](#generatekeypair)
|
||||
* [signContent(content: String, privateKey: String): String](#signcontentcontent-string-privatekey-string-string)
|
||||
|
@ -77,6 +78,7 @@ This project is licensed under GNU Free Documentation License v1.3, see the [LIC
|
|||
* [verifyTemporarySignature(content: String, signature: String, publicKey: String, frames: Integer): Boolean](#verifytemporarysignaturecontent-string-signature-string-publickey-string-frames-integer-boolean)
|
||||
* [encryptContent(content: String, publicKey: String): String](#encryptcontentcontent-string-publickey-string-string)
|
||||
* [decryptContent(ciphertext: String, privateKey: String): String](#decryptcontentciphertext-string-privatekey-string-string)
|
||||
* [Example Implementations](#example-implementations)
|
||||
* [Authentication](#authentication)
|
||||
* [First-Level Authentication](#first-level-authentication)
|
||||
* [Password (LOGIN)](#password-login)
|
||||
|
@ -350,21 +352,24 @@ The fields in the error response object are as follows:
|
|||
|
||||
## Cryptography
|
||||
|
||||
Cryptography is a crucial part of the Socialbox standard, it serves many purposes such as session integrity to prevent
|
||||
session hijacking, data integrity to prevent data tampering, and confidentiality to prevent data eavesdropping. To keep
|
||||
things simple, every Socialbox client & server must implement the same cryptographic methods to ensure compatibility
|
||||
with other systems. Mainly, the Socialbox standard uses the following cryptographic methods:
|
||||
Cryptography is a crucial part of the Socialbox standard. It serves many purposes such as session integrity to prevent
|
||||
session hijacking, data integrity to prevent data tampering, and confidentiality to prevent data eavesdropping. Every
|
||||
Socialbox client & server must implement the same cryptographic methods to ensure compatibility with other systems.
|
||||
Mainly, the Socialbox standard uses the following cryptographic methods:
|
||||
|
||||
* **RSA**: Used for asymmetric encryption and decryption.
|
||||
* **SHA256**: Used for hashing data and generating secure signatures.
|
||||
* **Base64 Encoding**: All binary data (such as keys, signatures, and encrypted data) is encoded into Base64 for safe transmission.
|
||||
|
||||
> Note: Base64 encoding is necessary because binary data cannot be safely transmitted in certain contexts like URLs or
|
||||
JSON. Base64 converts binary data into a text-safe format.
|
||||
|
||||
### Key Generation
|
||||
|
||||
Key generation is the process of generating cryptographic keys for encryption and decryption. In Socialbox, RSA keys
|
||||
are used for asymmetric encryption and decryption. The key generation process involves generating a public key and a
|
||||
private key. The public key can be shared with others to encrypt/verify data, while the private key is kept secret and
|
||||
used to decrypt/sign data. These are the following conditions for key generation:
|
||||
Key generation is the process of generating cryptographic keys for encryption and decryption. In Socialbox, RSA keys are
|
||||
used for asymmetric encryption and decryption. The key generation process involves generating a public key and a private
|
||||
key. The public key can be shared with others to encrypt/verify data, while the private key is kept secret and used to
|
||||
decrypt/sign data. These are the following conditions for key generation:
|
||||
|
||||
* **Key Size**: The key size must be 2048 bits.
|
||||
* **Algorithm**: The algorithm used for key generation must be RSA.
|
||||
|
@ -399,10 +404,9 @@ MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQ...
|
|||
|
||||
### Signing and Signature Verification
|
||||
|
||||
Signing is the process of generating a digital signature for a message using a private key. The signature can be
|
||||
verified by others using the corresponding public key to ensure the message's integrity and authenticity. In Socialbox,
|
||||
signing and signature verification are used to ensure the integrity of data exchanged between peers. The following
|
||||
conditions apply to signing and signature verification:
|
||||
Signing is the process of generating a digital signature for a message using a private key. The signature can be verified
|
||||
by others using the corresponding public key to ensure the message's integrity and authenticity. In Socialbox, signing
|
||||
and signature verification are used to ensure the integrity of data exchanged between peers.
|
||||
|
||||
* **Algorithm**: RSA with SHA256 hash function (SHA256withRSA)
|
||||
* **Padding**: PKCS#1 v1.5 padding for signatures.
|
||||
|
@ -432,9 +436,10 @@ echo -n "Hello, World!" | openssl dgst -sha256 -verify public.der -signature sig
|
|||
|
||||
### Temporary Signature & Verification
|
||||
|
||||
Temporary signatures work the same way as regular signatures, but the keypair used to sign the data is temporary and
|
||||
is only used for a block of time, usually within 60 seconds. Temporary signatures are used to ensure the integrity of
|
||||
data exchanged between peers within a short period. The following conditions apply to temporary signatures:
|
||||
Temporary signatures work similarly to regular signatures, but the keypair used to sign the data is temporary and only
|
||||
valid for a limited time (typically 60 seconds). This feature ensures the integrity of data exchanged between peers
|
||||
within a short time window, adding protection against replay attacks. To ensure time synchronization, developers should
|
||||
use NTP (Network Time Protocol).
|
||||
|
||||
* **Algorithm**: RSA with SHA256 hash function (SHA256withRSA)
|
||||
* **Padding**: PKCS#1 v1.5 for signatures.
|
||||
|
@ -490,10 +495,9 @@ Hello, World!|28765051
|
|||
|
||||
### Encryption and Decryption
|
||||
|
||||
Encryption is the process of converting plaintext data into ciphertext using a public key, while decryption is the
|
||||
process of converting ciphertext back into plaintext using the corresponding private key. In Socialbox, encryption and
|
||||
decryption are used to ensure the confidentiality of data exchanged between peers. The following conditions apply to
|
||||
encryption and decryption:
|
||||
Encryption is the process of converting plaintext data into ciphertext using a public key, while decryption converts
|
||||
ciphertext back into plaintext using the corresponding private key. In Socialbox, encryption and decryption ensure the
|
||||
confidentiality of data exchanged between peers.
|
||||
|
||||
* **Algorithm**: RSA with OAEP (Optimal Asymmetric Encryption Padding)
|
||||
* **Hash**: SHA256
|
||||
|
@ -517,6 +521,13 @@ openssl rsautl -decrypt -oaep -inkey private_base64.txt -in ciphertext.bin
|
|||
|
||||
> Note: In this example, the produced ciphertext is binary data, but if you want to transmit the ciphertext over the
|
||||
network, you must encode it using Base64 encoding.
|
||||
>
|
||||
|
||||
### Error Handling
|
||||
|
||||
For real-world implementations, error handling should be a priority. For example, signature verification and decryption
|
||||
can fail if the data is tampered with, keys don’t match, or the data has expired. Ensure that invalid signatures or
|
||||
decryption errors are caught and handled appropriately to avoid security vulnerabilities
|
||||
|
||||
### Methods
|
||||
|
||||
|
@ -525,12 +536,13 @@ The following methods should be implemented by all Socialbox servers and clients
|
|||
#### generateKeyPair()
|
||||
|
||||

|
||||
Generates a new RSA key pair for encryption and decryption, returns the public and private keys in Base64 encoding.
|
||||
Generates a new RSA key pair for encryption and decryption, returning the public and private keys in Base64 encoding.
|
||||
|
||||
#### signContent(content: String, privateKey: String): String
|
||||
|
||||

|
||||
Signs the content using the private key and returns the signature in Base64 encoding.
|
||||
The content is expected to be a UTF-8 encoded string.
|
||||
|
||||
#### verifyContent(content: String, signature: String, publicKey: String): Boolean
|
||||
|
||||
|
@ -542,7 +554,7 @@ Verifies the signature of the content using the public key and returns true if t
|
|||

|
||||
Signs the content using a temporary private key and returns the temporary signature in Base64 encoding.
|
||||
|
||||
### verifyTemporarySignature(content: String, signature: String, publicKey: String, frames: Integer): Boolean
|
||||
#### verifyTemporarySignature(content: String, signature: String, publicKey: String, frames: Integer): Boolean
|
||||
|
||||

|
||||
Verifies the temporary signature of the content using the public key and returns true if the signature is valid
|
||||
|
@ -558,6 +570,20 @@ Encrypts the content using the public key and returns the ciphertext in Base64 e
|
|||

|
||||
Decrypts the ciphertext using the private key and returns the plaintext content.
|
||||
|
||||
### Example Implementations
|
||||
|
||||
This standard provides examples of how to implement the cryptographic methods using OpenSSL or any other cryptographic
|
||||
library that supports RSA encryption and decryption. The examples demonstrate how to generate RSA key pairs, sign and
|
||||
verify content, and encrypt and decrypt data using RSA.
|
||||
|
||||
> Note: The examples provided are for demonstration purposes only. Developers should use a secure cryptographic library
|
||||
and follow best practices to ensure the security of their implementations.
|
||||
|
||||
- [Python](examples/cryptography.py)
|
||||
- [Java](examples/Cryptography.java)
|
||||
- [PHP](examples/cryptography.php)
|
||||
- [C](examples/cryptography.c)
|
||||
|
||||
------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
# Authentication
|
||||
|
|
69
examples/cryptography.c
Normal file
69
examples/cryptography.c
Normal file
|
@ -0,0 +1,69 @@
|
|||
import java.security.*;
|
||||
import java.util.Base64;
|
||||
import javax.crypto.Cipher;
|
||||
import java.time.Instant;
|
||||
|
||||
public class Cryptography {
|
||||
|
||||
// Generate a new RSA key pair
|
||||
public static KeyPair generateKeyPair() throws NoSuchAlgorithmException {
|
||||
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");
|
||||
keyGen.initialize(2048);
|
||||
return keyGen.generateKeyPair();
|
||||
}
|
||||
|
||||
// Sign the content using the private key
|
||||
public static String signContent(String content, PrivateKey privateKey) throws Exception {
|
||||
Signature privateSignature = Signature.getInstance("SHA256withRSA");
|
||||
privateSignature.initSign(privateKey);
|
||||
privateSignature.update(content.getBytes("UTF-8"));
|
||||
byte[] signature = privateSignature.sign();
|
||||
return Base64.getEncoder().encodeToString(signature);
|
||||
}
|
||||
|
||||
// Verify the signature of the content using the public key
|
||||
public static boolean verifyContent(String content, String signature, PublicKey publicKey) throws Exception {
|
||||
Signature publicSignature = Signature.getInstance("SHA256withRSA");
|
||||
publicSignature.initVerify(publicKey);
|
||||
publicSignature.update(content.getBytes("UTF-8"));
|
||||
byte[] signatureBytes = Base64.getDecoder().decode(signature);
|
||||
return publicSignature.verify(signatureBytes);
|
||||
}
|
||||
|
||||
// Sign the content with a temporary signature based on time blocks
|
||||
public static String temporarySignContent(String content, PrivateKey privateKey, int frames) throws Exception {
|
||||
long timeBlock = Instant.now().getEpochSecond() / 60;
|
||||
String contentWithTime = content + "|" + timeBlock;
|
||||
return signContent(contentWithTime, privateKey);
|
||||
}
|
||||
|
||||
// Verify a temporary signature with time blocks
|
||||
public static boolean verifyTemporarySignature(String content, String signature, PublicKey publicKey, int frames) throws Exception {
|
||||
long timeBlock = Instant.now().getEpochSecond() / 60;
|
||||
|
||||
for (int i = 0; i < frames; i++) {
|
||||
String contentWithTime = content + "|" + (timeBlock - i);
|
||||
if (verifyContent(contentWithTime, signature, publicKey)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// Encrypt the content using the public key
|
||||
public static String encryptContent(String content, PublicKey publicKey) throws Exception {
|
||||
Cipher cipher = Cipher.getInstance("RSA/ECB/OAEPWithSHA-256AndMGF1Padding");
|
||||
cipher.init(Cipher.ENCRYPT_MODE, publicKey);
|
||||
byte[] ciphertext = cipher.doFinal(content.getBytes("UTF-8"));
|
||||
return Base64.getEncoder().encodeToString(ciphertext);
|
||||
}
|
||||
|
||||
// Decrypt the content using the private key
|
||||
public static String decryptContent(String ciphertext, PrivateKey privateKey) throws Exception {
|
||||
Cipher cipher = Cipher.getInstance("RSA/ECB/OAEPWithSHA-256AndMGF1Padding");
|
||||
cipher.init(Cipher.DECRYPT_MODE, privateKey);
|
||||
byte[] decryptedBytes = cipher.doFinal(Base64.getDecoder().decode(ciphertext));
|
||||
return new String(decryptedBytes, "UTF-8");
|
||||
}
|
||||
}
|
69
examples/cryptography.java
Normal file
69
examples/cryptography.java
Normal file
|
@ -0,0 +1,69 @@
|
|||
import java.security.*;
|
||||
import java.util.Base64;
|
||||
import javax.crypto.Cipher;
|
||||
import java.time.Instant;
|
||||
|
||||
public class Cryptography {
|
||||
|
||||
// Generate a new RSA key pair
|
||||
public static KeyPair generateKeyPair() throws NoSuchAlgorithmException {
|
||||
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");
|
||||
keyGen.initialize(2048);
|
||||
return keyGen.generateKeyPair();
|
||||
}
|
||||
|
||||
// Sign the content using the private key
|
||||
public static String signContent(String content, PrivateKey privateKey) throws Exception {
|
||||
Signature privateSignature = Signature.getInstance("SHA256withRSA");
|
||||
privateSignature.initSign(privateKey);
|
||||
privateSignature.update(content.getBytes("UTF-8"));
|
||||
byte[] signature = privateSignature.sign();
|
||||
return Base64.getEncoder().encodeToString(signature);
|
||||
}
|
||||
|
||||
// Verify the signature of the content using the public key
|
||||
public static boolean verifyContent(String content, String signature, PublicKey publicKey) throws Exception {
|
||||
Signature publicSignature = Signature.getInstance("SHA256withRSA");
|
||||
publicSignature.initVerify(publicKey);
|
||||
publicSignature.update(content.getBytes("UTF-8"));
|
||||
byte[] signatureBytes = Base64.getDecoder().decode(signature);
|
||||
return publicSignature.verify(signatureBytes);
|
||||
}
|
||||
|
||||
// Sign the content with a temporary signature based on time blocks
|
||||
public static String temporarySignContent(String content, PrivateKey privateKey, int frames) throws Exception {
|
||||
long timeBlock = Instant.now().getEpochSecond() / 60;
|
||||
String contentWithTime = content + "|" + timeBlock;
|
||||
return signContent(contentWithTime, privateKey);
|
||||
}
|
||||
|
||||
// Verify a temporary signature with time blocks
|
||||
public static boolean verifyTemporarySignature(String content, String signature, PublicKey publicKey, int frames) throws Exception {
|
||||
long timeBlock = Instant.now().getEpochSecond() / 60;
|
||||
|
||||
for (int i = 0; i < frames; i++) {
|
||||
String contentWithTime = content + "|" + (timeBlock - i);
|
||||
if (verifyContent(contentWithTime, signature, publicKey)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// Encrypt the content using the public key
|
||||
public static String encryptContent(String content, PublicKey publicKey) throws Exception {
|
||||
Cipher cipher = Cipher.getInstance("RSA/ECB/OAEPWithSHA-256AndMGF1Padding");
|
||||
cipher.init(Cipher.ENCRYPT_MODE, publicKey);
|
||||
byte[] ciphertext = cipher.doFinal(content.getBytes("UTF-8"));
|
||||
return Base64.getEncoder().encodeToString(ciphertext);
|
||||
}
|
||||
|
||||
// Decrypt the content using the private key
|
||||
public static String decryptContent(String ciphertext, PrivateKey privateKey) throws Exception {
|
||||
Cipher cipher = Cipher.getInstance("RSA/ECB/OAEPWithSHA-256AndMGF1Padding");
|
||||
cipher.init(Cipher.DECRYPT_MODE, privateKey);
|
||||
byte[] decryptedBytes = cipher.doFinal(Base64.getDecoder().decode(ciphertext));
|
||||
return new String(decryptedBytes, "UTF-8");
|
||||
}
|
||||
}
|
120
examples/cryptography.php
Normal file
120
examples/cryptography.php
Normal file
|
@ -0,0 +1,120 @@
|
|||
<?php
|
||||
|
||||
class Cryptography
|
||||
{
|
||||
// Generate a new RSA key pair
|
||||
public static function generateKeyPair()
|
||||
{
|
||||
// Generate private key
|
||||
$config = [
|
||||
"private_key_type" => OPENSSL_KEYTYPE_RSA,
|
||||
"private_key_bits" => 2048,
|
||||
];
|
||||
$res = openssl_pkey_new($config);
|
||||
|
||||
// Extract the private key to a variable
|
||||
openssl_pkey_export($res, $privateKey);
|
||||
|
||||
// Extract the public key from the private key
|
||||
$publicKeyDetails = openssl_pkey_get_details($res);
|
||||
$publicKey = $publicKeyDetails['key'];
|
||||
|
||||
// Return both keys in Base64 encoding (without PEM headers)
|
||||
return [
|
||||
'privateKey' => base64_encode($privateKey),
|
||||
'publicKey' => base64_encode($publicKey),
|
||||
];
|
||||
}
|
||||
|
||||
// Sign the content using the private key
|
||||
public static function signContent($content, $privateKey)
|
||||
{
|
||||
// Decode the Base64 private key
|
||||
$privateKeyDecoded = openssl_pkey_get_private(base64_decode($privateKey));
|
||||
|
||||
// Sign the content
|
||||
openssl_sign($content, $signature, $privateKeyDecoded, OPENSSL_ALGO_SHA256);
|
||||
|
||||
// Return the signature in Base64 encoding
|
||||
return base64_encode($signature);
|
||||
}
|
||||
|
||||
// Verify the signature of the content using the public key
|
||||
public static function verifyContent($content, $signature, $publicKey)
|
||||
{
|
||||
// Decode the Base64 public key
|
||||
$publicKeyDecoded = openssl_pkey_get_public(base64_decode($publicKey));
|
||||
|
||||
// Decode the Base64 signature
|
||||
$signatureDecoded = base64_decode($signature);
|
||||
|
||||
// Verify the signature
|
||||
$result = openssl_verify($content, $signatureDecoded, $publicKeyDecoded, OPENSSL_ALGO_SHA256);
|
||||
|
||||
// Return true if the signature is valid, false otherwise
|
||||
return $result === 1;
|
||||
}
|
||||
|
||||
// Sign the content with a temporary signature based on time blocks
|
||||
public static function temporarySignContent($content, $privateKey, $frames = 1)
|
||||
{
|
||||
// Calculate the current time block
|
||||
$timeBlock = intdiv(time(), 60);
|
||||
|
||||
// Append the time block to the content
|
||||
$contentWithTime = $content . '|' . $timeBlock;
|
||||
|
||||
// Sign the content with the time block
|
||||
return self::signContent($contentWithTime, $privateKey);
|
||||
}
|
||||
|
||||
// Verify a temporary signature with time blocks
|
||||
public static function verifyTemporarySignature($content, $signature, $publicKey, $frames = 1)
|
||||
{
|
||||
// Calculate the current time block
|
||||
$timeBlock = intdiv(time(), 60);
|
||||
|
||||
// Check for each time block within the frame range
|
||||
for ($i = 0; $i < $frames; $i++) {
|
||||
// Append the time block to the content
|
||||
$contentWithTime = $content . '|' . ($timeBlock - $i);
|
||||
|
||||
// Verify the signature
|
||||
if (self::verifyContent($contentWithTime, $signature, $publicKey)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// Return false if none of the frames matched
|
||||
return false;
|
||||
}
|
||||
|
||||
// Encrypt the content using the public key
|
||||
public static function encryptContent($content, $publicKey)
|
||||
{
|
||||
// Decode the Base64 public key
|
||||
$publicKeyDecoded = openssl_pkey_get_public(base64_decode($publicKey));
|
||||
|
||||
// Encrypt the content
|
||||
openssl_public_encrypt($content, $ciphertext, $publicKeyDecoded, OPENSSL_PKCS1_OAEP_PADDING);
|
||||
|
||||
// Return the ciphertext in Base64 encoding
|
||||
return base64_encode($ciphertext);
|
||||
}
|
||||
|
||||
// Decrypt the content using the private key
|
||||
public static function decryptContent($ciphertext, $privateKey)
|
||||
{
|
||||
// Decode the Base64 private key
|
||||
$privateKeyDecoded = openssl_pkey_get_private(base64_decode($privateKey));
|
||||
|
||||
// Decode the Base64 ciphertext
|
||||
$ciphertextDecoded = base64_decode($ciphertext);
|
||||
|
||||
// Decrypt the content
|
||||
openssl_private_decrypt($ciphertextDecoded, $plaintext, $privateKeyDecoded, OPENSSL_PKCS1_OAEP_PADDING);
|
||||
|
||||
// Return the decrypted plaintext
|
||||
return $plaintext;
|
||||
}
|
||||
}
|
101
examples/cryptography.py
Normal file
101
examples/cryptography.py
Normal file
|
@ -0,0 +1,101 @@
|
|||
import base64
|
||||
import time
|
||||
from Crypto.PublicKey import RSA
|
||||
from Crypto.Signature import pkcs1_15
|
||||
from Crypto.Hash import SHA256
|
||||
from Crypto.Cipher import PKCS1_OAEP
|
||||
|
||||
class Cryptography:
|
||||
|
||||
@staticmethod
|
||||
def generate_key_pair():
|
||||
# Generate RSA key pair
|
||||
key = RSA.generate(2048)
|
||||
private_key = key.export_key(format='DER')
|
||||
public_key = key.publickey().export_key(format='DER')
|
||||
|
||||
# Return keys in Base64 encoding
|
||||
return {
|
||||
'privateKey': base64.b64encode(private_key).decode('utf-8'),
|
||||
'publicKey': base64.b64encode(public_key).decode('utf-8')
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def sign_content(content, private_key_base64):
|
||||
# Decode the Base64 private key
|
||||
private_key = RSA.import_key(base64.b64decode(private_key_base64))
|
||||
|
||||
# Hash the content using SHA256
|
||||
h = SHA256.new(content.encode('utf-8'))
|
||||
|
||||
# Sign the hash
|
||||
signature = pkcs1_15.new(private_key).sign(h)
|
||||
|
||||
# Return the signature in Base64 encoding
|
||||
return base64.b64encode(signature).decode('utf-8')
|
||||
|
||||
@staticmethod
|
||||
def verify_content(content, signature_base64, public_key_base64):
|
||||
# Decode the Base64 public key and signature
|
||||
public_key = RSA.import_key(base64.b64decode(public_key_base64))
|
||||
signature = base64.b64decode(signature_base64)
|
||||
|
||||
# Hash the content
|
||||
h = SHA256.new(content.encode('utf-8'))
|
||||
|
||||
try:
|
||||
# Verify the signature
|
||||
pkcs1_15.new(public_key).verify(h, signature)
|
||||
return True
|
||||
except (ValueError, TypeError):
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def temporary_sign_content(content, private_key_base64, frames=1):
|
||||
# Calculate the current time block
|
||||
time_block = int(time.time() // 60)
|
||||
|
||||
# Append the time block to the content
|
||||
content_with_time = f"{content}|{time_block}"
|
||||
|
||||
# Sign the content with the time block
|
||||
return Cryptography.sign_content(content_with_time, private_key_base64)
|
||||
|
||||
@staticmethod
|
||||
def verify_temporary_signature(content, signature_base64, public_key_base64, frames=1):
|
||||
# Calculate the current time block
|
||||
time_block = int(time.time() // 60)
|
||||
|
||||
# Check for each time block within the frame range
|
||||
for i in range(frames):
|
||||
content_with_time = f"{content}|{time_block - i}"
|
||||
if Cryptography.verify_content(content_with_time, signature_base64, public_key_base64):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def encrypt_content(content, public_key_base64):
|
||||
# Decode the Base64 public key
|
||||
public_key = RSA.import_key(base64.b64decode(public_key_base64))
|
||||
|
||||
# Encrypt the content using RSA-OAEP
|
||||
cipher = PKCS1_OAEP.new(public_key)
|
||||
ciphertext = cipher.encrypt(content.encode('utf-8'))
|
||||
|
||||
# Return the ciphertext in Base64 encoding
|
||||
return base64.b64encode(ciphertext).decode('utf-8')
|
||||
|
||||
@staticmethod
|
||||
def decrypt_content(ciphertext_base64, private_key_base64):
|
||||
# Decode the Base64 private key and ciphertext
|
||||
private_key = RSA.import_key(base64.b64decode(private_key_base64))
|
||||
ciphertext = base64.b64decode(ciphertext_base64)
|
||||
|
||||
# Decrypt the content using RSA-OAEP
|
||||
cipher = PKCS1_OAEP.new(private_key)
|
||||
plaintext = cipher.decrypt(ciphertext)
|
||||
|
||||
# Return the decrypted content
|
||||
return plaintext.decode('utf-8')
|
||||
|
Loading…
Add table
Reference in a new issue